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ABSTRACT
In this paper, we present Puffin, a domain-specific language
embedded in C++98 for incremental adoption in existing
unstructured hydrodynamics codes. Because HPC systems
with heterogeneous architectures (traditional CPUs, GPUs,
Xeon Phis, etc.) are becoming increasingly common, devel-
opers of existing HPC software projects need performance
across multiple architectures. While Puffin is not yet com-
plete and only supports CPU execution so far, our aim for
Puffin is to provide performance portability to existing un-
structured hydrodynamics simulation projects. Our prelim-
inary results focus on two topics. First, we show what the
costs of using Puffin are. Adopting Puffin has a initial cost
of rewriting existing code into Puffin. Using Puffin has the
ongoing costs of increased compilation times (2–3X slower)
and runtime overhead (0–11% slower). Second, we show
the current benefits of using Puffin and mention the poten-
tial future benefits. We show how Puffin can gradually be
adopted into an existing project, by doing so with the exist-
ing test application, LULESH 2.0. We show a reduction in
code length by porting code to Puffin.

1. INTRODUCTION
Traditionally, high-performance computing (HPC) projects
have code written at a low-level to avoid inefficiencies in
high-level code, such as abstraction overhead. While this
low level of abstraction ties a project to a specific architec-
ture family, most commonly single-core CPU, for many years
HPC hardware has matched these assumptions quite well.
In recent years, however, other architecture families, such as
multi-core CPUs, many-core CPUs (Xeon Phi) and GPUs,
have become increasingly common. With the rise of multiple
architecture families, HPC projects are facing a new chal-
lenge. Users of HPC projects want to run the projects on
multiple platforms, with vastly different architectures, and
expect the projects to perform well everywhere.

Fortunately, domain-specific languages (DSL) do not require
the high cost that is generally assumed, and can provide the
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portability and performance necessary for HPC projects.

This paper presents Puffin, an efficient and portable DSL
embedded in C++ (the 1998 standard), for unstructured
hydrodynamics simulation projects. Puffin is a descriptive
language: Code written in Puffin describes what calcula-
tion to do without specifying how it should be done. This
separation between what and how is very powerful. Do-
main experts using Puffin can focus on what calculations
they want to perform and the correctness of those calcula-
tions, without worrying about implementation details. How
to efficiently perform calculations can vary drastically be-
tween architecture families, which Puffin’s abstractions are
designed to handle. By writing code that only contains what
should be done, how the computation will be carried out can
be supplied on an architecture to architecture basis.

Puffin is incrementally adoptable. Hydrodynamics simula-
tion projects that decide to adopt Puffin are not making an
all or nothing choice. Once Puffin has been adopted, de-
velopers can adopt Puffin at their own pace, and continue
new development on the project without using Puffin, for
as long as that development makes sense. For example, if
a new critical feature is nearing completion just as Puffin
is adopted into the project, the current implementation can
be finished without Puffin and be ported to Puffin at a later
time. Thus, the feature can begin production use without a
delay caused by the adoption of Puffin.

Currently, Puffin is not fully implemented. Enough of Puffin
has been implemented to produce preliminary results. We
use LULESH 2.0 [6] as the first project to port to Puffin.
LULESH 2.0 is an update of LULESH [1], a proxy applica-
tion, which in a short implementation represents the numer-
ical algorithms, data motion, and programming style typical
of production-scale software simulation projects. We chose
LULESH 2.0 because it is a widely available approximation
of production hydrodynamics projects, which is Puffin’s core
domain.

As Puffin is presently implemented, three fourths of LULESH
2.0’s loops can be rewritten in Puffin. The Puffin version of
these loops can be written in roughly half the number of lines
of code that the original version required. We present several
versions of LULESH 2.0 ported to Puffin, with and without
recent unoptimized features of Puffin, and with LULESH
2.0’s original loop structure as well as with an optimized loop
structure. While the Puffin ports of LULESH 2.0 do have
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up to 11% runtime overhead and compilation 2–3X slower
than the original version of LULESH 2.0, they are shorter
and potentially more portable than the original version.

The rest of this paper is organized as follows: Section 2 de-
scribes the features and capabilities of Puffin that have been
implemented. Section 3 describes Puffin’s current implemen-
tation and optimizations. Section 4 describes how existing
hydrodynamics simulation projects can adopt Puffin. Sec-
tion 5 describes the preliminary results we have with our par-
tial implementation of Puffin and partial port of LULESH
2.0. Section 6 discusses other projects similar to Puffin.
Section 7 covers our plan for future development on Puffin.
Section 8 contains our conclusions.

2. LANGUAGE SEMANTICS
Like most languages, Puffin code can be broken into two cat-
egories: Statements and expressions. Unlike many domain-
specific languages, Puffin does not define the types of, sizes
of, or relationships between basic concepts, such as nodes,
elements, and faces. Instead, Puffin provides simple mech-
anisms for users to define the types and sizes of the basic
concepts they need as well as defining the relationships be-
tween these concepts.

2.1 Aspects and Arrays
In Puffin, arrays of values are the basic unit of storage. Puf-
fin supports arrays of boolean values, integers, floating point
numbers, and double-precision floating point numbers. Un-
like the common terminology for arrays, in Puffin, we do
not refer to an array’s dimensions, but instead an array’s
aspects. In Puffin’s target domain, hydrodynamic simula-
tions, dimensions most commonly refers to physical/spatial
dimensions. To avoid confusion with spatial dimensions, we
call the dimensions over which Puffin arrays are indexed as-
pects. In particular, spatial dimensions are a single aspect
of some Puffin arrays.

Users of Puffin define the aspects they will use for their
arrays. To define an aspect, a user needs to provide three
pieces of information: A unique nonnegative integer for use
as identifier; the size of the aspect, if it has a fixed size; and
the storage style for arrays that use this aspect.

In the Puffin port of LULESH 2.0, there are eight aspects.
For brevity, below are the definitions for Nodes and (spatial)
Dimensions:

typedef Puff inAspect <0, −1, Array> NodeAspect ;
typedef Puff inAspect <1, 3 , Container>

DimensionAspect ;

These aspects can be used to define arrays over nodes and
dimensions: NodeDimArray and DimNodeArray. When defin-
ing arrays over multiple aspects, the order of the aspects
matters. NodeDimArray is an array of structures, where the
array has a structure for each node and where each structure
contains three values, one each for x, y, and z. Conversely,
DimNodeArray is a structure of arrays, where the structure
contains three arrays, on each for x, y, and z, and where
each array contains a single value for each node. Since both
of these array types are defined over spatial dimensions and

number of nodes, objects of either type can be used inter-
changeably in Puffin.

To use an aspect in a calculation, it must be instantiated:

NodeAspect Nodes ( domain . numNodes ( ) ) ;
DimensionAspect Dim ( ) ;

Nodes requires its size as a constructor argument, since it
was not defined as fixed-sized. Dim does not have any con-
structor arguments because it was defined as fixed-sized.

Instantiated aspects are used in Puffin statements and ex-
pressions to define the range of calculations. This range in
turn defines the number of iterations a Puffin statement or
expression executes when run. Each iteration of a calcula-
tion has a specific index for each aspect in the calculation,
which together form an index object. Section 3.1 has more
details on index objects. The order of iterations is unspeci-
fied to allow for parallelization and future optimizations.

2.2 Statements
The previous section describes Puffin’s abstractions over data:
Arrays and aspects. This section and the following ones
describe Puffin’s abstractions over calculations and control
flow: Statements and expressions.

Puffin statements change state when executed, usually chang-
ing values in an array; Puffin expressions produce values and
have no side effects. Puffin statements are Puffin’s itera-
tion/loop constructs, and each statement explicitly contains
the aspects which apply to the statement. When executed,
each Puffin statement iterates over all given aspects.

Puffin statements come in two varieties: Standalone and
statement blocks. Standalone statements generally only make
a single change to state. For example, standalone assign-
ment only assigns values to a single Puffin array. Puffin has
three types of standalone statements: Assignments (Section
2.3), reductions (Section 2.6), and assertions (Section 2.7).

2.2.1 Foreach Statements/Blocks
While Puffin’s standalone statements have a lot of expres-
sive power, they are limited to a single change of state per
loop. Multiple changes with standalone statements require
multiple loops. Puffin statement blocks can avoid the ineffi-
ciencies and loop overhead of multiple loops.

A statement block is a series of statements that are per-
formed together in a single loop. Combining multiple state-
ments into a single block/loop shares the loop overhead be-
tween all statements. We call individual statements in a
statement block dependent statements to distinguish them
from standalone statements. All statement blocks begin
with Puffin’s foreach construct, puffin_foreach. The as-
pects, over which the whole block ranges, follows immedi-
ately after the call to puffin_foreach in parentheses. After
the aspects, the dependent statements follow. With a few
exceptions, all dependent statements appear in parentheses.
A single call to the member function execute with no ar-
guments must end a statement block. Consider this simple
example:



pu f f i n f o r e a c h (Nodes )
( a |= 0 . 0 )
(b |= 1 . 0 )
. execute ( ) ;

where |= is the dependent assignment operator, and a and
b are Puffin arrays over the node aspect. All examples in
this section use dependent assignment statements (the |=

operator) and scalar-value expressions, which are explained
in Sections 2.3 and 2.4 respectively.

puffin_foreach blocks without the execute call can be used
as dependent statements; consider the following example:

pu f f i n f o r e a c h (Nodes )
( a |= 0 . 0 )
( pu f f i n f o r e a c h (Dim)

( c |= 2 . 0 ) )
(b |= 1 . 0 )
. execute ( ) ;

where a and b are Puffin arrays over the node aspect and c is
a Puffin array over the node and spatial dimensions aspects.
This block performs these assignments in order, so that all
of a, b and c are assigned the correct values, despite the
differences in aspects.

Additionally, for some dependent statement blocks, partic-
ularly when used with conditional statements, there are no
extra aspects to add. (For more on conditions, see Section
2.5.) In this case, puffin_block is used instead of puf-

fin_foreach; consider:

pu f f i n f o r e a c h (Nodes )
( a |= 0 . 0 )
( pu f f i n b l o c k

( c |= 2 . 0 )
(d |= 3 . 0 ) )

(b |= 1 . 0 )
. execute ( ) ;

where a, b, c, and d are Puffin arrays over the node aspect.

2.3 Assignment
Puffin assignments are the most common Puffin statement.
Consider this simple loop taken from LULESH 2.0:

for ( Index t i = 0 ; i < numElem ; ++i ){
s i gxx [ i ] =
s igyy [ i ] =
s i g z z [ i ] = − domain . p( i ) − domain . q ( i ) ;

}

This loop clearly iterates over both elements and spatial di-
mensions. By properly defining the element aspect (Elems),
the spatial dimensions aspect (Dim), and the Puffin arrays
sigdd over elements and spatial dimensions, p and q over
elements, the following Puffin standalone statement can be
used instead:

s igdd [ Elems ] [ Dim ] <<= − p − q ;

For standalone assignment, Puffin uses the operator <<=
instead of operator = to make this use of Puffin clearly ex-
plicit (and easily searchable). The right-hand side of a Puffin

assignment statement is any Puffin expression for which the
aspect requirements are satisfied by the aspects on the left-
hand side. (Puffin expressions are discussed in Section 2.4.)
The left-hand side of a Puffin assignment statement requires
some explanation: The left-hand side of a Puffin assignment
statement must begin with a Puffin array. Using the array
subscript operator (square brackets), aspects to range over
are applied to the Puffin array on the left-hand side. For
standalone assignment, the aspects used must exactly match
the aspects over which the left-hand side array has been de-
fined. In the above example, the whole calculation ranges
over both elements and spatial dimensions, which matches
the definition of sigdd.

As seen in the explanation of puffin_foreach above, Puffin
uses the operator |= for dependent assignment, which is used
for general clarity and to distinguish it from the standalone
assignment operator. The above example can be written
using Puffin’s dependent assignment statement as:

pu f f i n f o r e a c h (Elems ) (Dim)
( s igdd |= − p − q )
. execute ( ) ;

Aspects on the left-hand side of Puffin’s dependent assign-
ment statement are optional. However, all aspect require-
ments of both the left- and right-hand side must be satisfied
for a dependent assignment statement to successfully com-
pile and execute.

2.4 Expressions
The previous section describes Puffin assignment. This sec-
tion describes Puffin expressions which are used to calculate
values. Expressions are used on the right-hand side of an
assignment statement, in conditions, reductions, and asser-
tions. See Sections 2.3, 2.5, 2.6, and 2.7 respectively for
more details. This section focuses on Puffin’s simplest ex-
pressions: Arrays, scalars, constants, operators, and point-
wise functions. Sections 2.5 and 2.8 describe Puffin’s other,
more complex expressions.

Like traditional expressions in most programming languages,
a Puffin expression calculates and return a value based on its
context. In the generic expression, a+ b, the value returned
by evaluating this expression depends upon the meaning of
a and b, which are generally implied by the context where
the expression is used. Puffin expressions rely on context
for variable definition/bindings and additionally on index
objects. Index objects are discussed in more detail in Section
3.1. Puffin expressions are defined over aspects, which must
be present in the index object for the expression to return a
meaningful value.

2.4.1 Arrays, Scalars, and Constants
As implied by the example in Section 2.3, any Puffin array
can be used as a Puffin expression. Of course, a Puffin ex-
pression that is a Puffin array requires all of the aspects over
which it is defined. Additionally, scalar values may be Puf-
fin expressions, which have no aspect requirements. Puffin
supports boolean values, integers, floating point numbers,
and double-precision floating point numbers as scalar val-
ues. These scalar values can variables or constants.



Currently, Puffin supports compile-time inlining of integer
values through the use of Puffin constants. A Puffin con-
stant is a cross between a Puffin scalar and a Puffin array:
A Puffin constant can be a scalar value or be defined over one
or more fixed-sized aspects. All values in a Puffin constant
must be fixed at compile-time. Puffin constants serve two
main purposes in the Puffin port of LULESH 2.0: First, Puf-
fin constants can serve as bitwise masks to help determine
boundary conditions, and second, they store fixed integer
coefficients (±1) that vary over two aspects.

2.4.2 Operators and Point-wise Functions
Beyond arrays and scalars, Puffin allows for expressions based
on mathematical operators and functions. These operators
and functions take arbitrary Puffin expressions as operands,
so there is no limit on how complex a Puffin expression can
be. Puffin expressions based on all of the operators and
functions described in this section require the union of their
operands’ required aspects. Also, since the operators de-
scribed in this section are overloaded C++ operators, stan-
dard C++ operator precedence is used.

Puffin supports the following mathematical operations: ad-
dition, subtraction, multiplication, division, negation, square,
square root, cubic root, maximum of two values (max), min-
imum of two values (min), and absolute value. These oper-
ations promote value types as needed, following standard
C++ type promotion rules (boolean to integer, integer to
float, and float to double). This list based off of current
use in the Puffin port of LULESH 2.0, and can be easily
extended to support other functions such as cube and sine.

Additionally, Puffin supports comparison operators for use
in conditions: equal, not equal, less than, less than/equal,
greater than, and greater than/equal. Likewise, Puffin sup-
ports logical operators: and and or. Unlike the mathemati-
cal operations above these comparison and logical operators
return boolean values regardless of their operands. Puffin
also supports bitwise operators for integer values only: bit-
wise and and bitwise or. For more information on conditions,
see Section 2.5.

Finally, Puffin also support user-defined scalar functions with-
out side effects. We leave out the details of these functions
due to space constraints, but briefly users can define func-
tions that take in an arbitrary number of scalar values and
produce a scalar value. Currently, users must also define a
class which contains their scalar function as well as some
boilerplate functions and type definitions.

2.5 Conditional Expressions and Statements
In C++, conditional expressions and statements cannot be
overloaded: The ternary operator, if, and switch. Thus, in
Puffin we must define our own conditional expressions and
statements. For traditional branching, Puffin provides the
dependent statements when and whenelse, explained below
in Section 2.5.1. For conditional expressions, Puffin provides
cond, explained in Section 2.5.2. For optimization and simi-
larity to existing code, Puffin provides the expression match,
which is roughly analogous to C’s switch statements and is
explained in Section 2.5.3.

2.5.1 Conditional Statements

The dependent statements when and whenelse provide users
with a way to branch differently on each iteration. The when
statement takes two arguments, a condition and a result.
Consider this example from the Puffin port of LULESH 2.0:

pu f f i n f o r e a c h (CurReg )
. when( vnewc <= eosvmin ,

compHalfStep |= compress ion )
. execute ( ) ;

where CurReg is the region aspect (a subset of all elements),
eosvmin is a scalar value, and vnewc, compHalfStep, and
compression are Puffin arrays over the element aspect. The
dependent statement is only executed on iterations for which
the condition is true.

The whenelse statement takes three arguments, a condition,
a true result, and a false result. Consider this example from
the Puffin port of LULESH 2.0:

pu f f i n f o r e a c h (CurReg )
. whenelse ( vnewc >= eosvmax ,

pu f f i n b l o c k ( p o ld |= 0 . 0 )
( compress ion |= 0 . 0 )
( compHalfStep |= 0 . 0 ) ,

p o ld |= p)
. execute ( ) ;

where CurReg is the region aspect (a subset of all elements),
eosvmax is a scalar value, and vnewc, p_old, compression,
and p are Puffin arrays over the element aspect. The first
dependent statement is only executed on iterations for which
the condition is true, and the second dependent statement is
only executed on iterations for which the condition is false.

Finally, we should note that the when and whenelse depen-
dent statements use member function syntax rather than
function call syntax.

2.5.2 Arbitrary Conditional Expressions
While the when and whenelse dependent statements pro-
vide a way to build arbitrarily-complex conditional state-
ment blocks, Puffin also provides a simpler way to write
conditions for producing values for a single assignment or
other statement. In the whenelse example of the last sec-
tion, the whenelse allowed for multiple assignments that
differed between the two cases. However, consider the fol-
lowing example where the assignment of p_old was the only
assignment:

pu f f i n f o r e a c h (CurReg )
. whenelse ( vnewc >= eosvmax ,

p o ld |= 0 .0 ,
p o ld |= p)

. execute ( ) ;

This is a fairly complex statement block for a single assign-
ment. The Puffin conditional expression, cond, makes this
code much less complex:

p o ld [ CurReg ] <<= cond ( vnewc >= eosvmax , 0 . 0 )
(p ) ;

There are many variations on cond in different functional
languages, and Puffin’s cond uses a simple clause style and



semantics compared to most of these. Like all versions of
cond, Puffin’s version allows for an arbitrary number of
clauses/conditions. Each non-final clause must contain ex-
actly two arguments, and the final clause must contain ex-
actly one argument. The first argument of a non-final clause
is a condition and must be a Puffin expression that returns
a boolean value at each iteration. The second argument of
non-final clause and the only argument of a final clause must
be a Puffin expression. During the evaluation of a cond ex-
pression in each iteration, the conditions of non-final clauses
are evaluated in order. When a condition evaluates to false,
the next condition is tried. When a condition evaluates to
true, the expression associated with that condition is eval-
uated, and its result is returned as the result for the cond

expression for that iteration. If all conditions evaluate to
false, then the expression in the final clause is evaluated,
and its result is returned as the result for the cond expres-
sion for that iteration. The general form is:

cond ( condi t ion 1 , expre s s i on 1 )
( condi t ion 2 , expre s s i on 2 )
. . .
( f i n a l e x p r e s s i o n )

2.5.3 Integer-Comparison Conditional Expressions
Puffin provides one other conditional expression, which is
far more restrictive than when, whenelse, or cond: match.
match is roughly analogous to C’s switch statements, with
the main exception that switch is a statement allowing ar-
bitrary side-effects, and match is an expression and only re-
turns values.

The syntax for match is:

match ( i n t e g e r e x p r e s s i on )
. pcase<case1>(expres s ion1 )
. pcase<case2>(expres s ion2 )
. . .
. p e l s e e r r o r ( error code ) ;

where integer_expression is any Puffin expression that re-
turns an integer for each iteration. The cases, case1 and
case2, must be Puffin constants. The expressions, expres-
sion1 and expression2, can be any Puffin expression. There
can be any number of cases, as long as the last case is
pelse_error. A pelse_error clause takes a single integer
argument.

For each iteration, the integer_expression is evaluated.
Like with a true condition in cond, for the first clause that
matches, the clause’s expression is evaluated and returned
as the result. If the integer_expression’s result does not
match any clause’s case, then pelse_error clause is imme-
diately calls exit with error_code as the call’s argument.

2.6 Reductions
Reductions are often used to find the sum or minimum value
of an array or calculation. Currently, the only supported
standalone reduction in Puffin is finding the minimum value
of an expression: puffin_min, as that is all that is used
in LULESH 2.0. The syntax for the minimum reduction,
puffin_min, is:

puf f in min ( aspect ,

express ion ,
i n i t i a l v a l u e ,
r e s u l t ) ;

where aspect is a single aspect, expression is any Puffin
expression that requires only aspect, initial_value is any
scalar value, and result is a reference to a scalar value.

For a realistic example of standalone reductions, consider
how LULESH 2.0 updates its hydro constraint each time
step:

puf f in min (CurReg ,
cond ( vdov != 0 . 0 ,

dvovmax / ( abs ( vdov ) +
1 .0 e−20))

( dthydro ) ,
dthydro ,
dthydro ) ;

As the syntax above shows, puffin_min is limited to ranging
over a single aspect. While we do plan to extend Puffin to
support reductions as dependent statements, Puffin already
supports reductions as expressions.

For expression reductions, Puffin supports finding the sum,
average, minimum value of values returned from a Puffin
expression over an aspect’s range.

reduce over ( aspect , expre s s i on )

where reduce_over is sum_over, average_over, or min_over;
aspect is a single aspect, and expression is any Puffin ex-
pression that requires at least aspect. expression can also
require any other aspects in the statement containing the re-
duction expression. The example from LULESH 2.0 in the
next section shows a simple use of sum_over.

2.7 Assertions
Puffin provides assertions to report runtime errors easily.
The syntax for a standalone Puffin assertion, puffin_assert,
is similar to standalone reduction in Puffin:

p u f f i n a s s e r t ( aspect ,
boo l ean expres s ion ,
error code ) ;

Like Puffin standalone reductions, this version of assertion
is limited to ranging over a single aspect. Unlike Puffin
standalone reductions, we have already extended Puffin to
support assertions as dependent statements. The boolean
expression parameter is any Puffin expression that returns
a boolean value and requires only the aspect that is the first
parameter. When executed, an assertion statement evalu-
ates the given boolean expression over the range of the given
aspect. If all boolean expressions in the aspect’s range eval-
uate to true, the assertion finishes without any side effects.
If any boolean expressions in the aspect’s range evaluate to
false, the assertion immediately calls the exit function with
the error_code parameter as its only argument. Similar to
when and whenelse, the dependent assert statement uses
member function syntax.

The dependent statement version of assertions in Puffin has
similar syntax and semantics:



pu f f i n f o r e a c h ( aspec t )
. . .
. a s s e r t ( boo l ean expres s ion ,

error code )
. . .
. execute ( ) ;

For an example of a dependent assertion, consider how LULESH
2.0 checks to make sure the volume of all elements remains
positive while also updating strains:

pu f f i n f o r e a c h (Elems )
( vdov |= sum over (Dim, ddd ) )
(ddd [Dim ] |= ddd − vdov / 3 . 0 )
. a s s e r t (vnew > 0 . 0 , VolumeError )
. execute ( ) ;

where ddd is over the spatial dimensions and element as-
pects, and vdov and vnew are over the element aspect.

2.8 Affiliations
Puffin provides mechanisms for describing calculations over
geometric/conceptual relationships between different types
of arrays. In Puffin, these relationships are called affilia-
tions. An affiliation is the relationship between each mem-
ber of one aspect with one or more members of another
aspect.

The most simple affiliation in LULESH 2.0 is between nodes
and elements. In LULESH 2.0, elements are the unstruc-
tured volumes that partition the physical space in a sim-
ulation. Nodes are the corners of each element. Since all
elements in LULESH 2.0 are hexahedrons, each element has
eight corners. Thus, each element is affiliated with eight
nodes. Conversely, each node is affiliated with a variable
number of elements.

LULESH 2.0 represents these affiliations between elements
and nodes as lists of indices. Puffin uses these affiliation
lists in its own affiliation objects. Additionally like aspects,
Puffin affiliations are used to group sets of calculations to-
gether. Conforming with the rest of Puffin, Puffin affiliations
are divided into statements and expressions.

A Puffin affiliation used for a Puffin statement executes the
statement once for each affiliated index. The syntax for a
Puffin affiliation statement is the same as for a Puffin state-
ment block. Consider the following example from LULESH
2.0’s calculation of hourglass forces, with the Puffin affilia-
tion from elements to nodes, ElemToNode:

pu f f i n f o r e a c h (Elems )
(ElemToNode

( fd [Dim ] |= fd + hgfd ) )
. execute ( ) ;

where fd is an array over nodes and spatial dimensions as-
pects, and hgfd is over elements and spatial dimensions as-
pects as well as the affiliation aspect between elements and
nodes. This code matches the original LULESH 2.0 code
exactly, with its same drawback: It is not thread-safe.

A Puffin affiliation used for a Puffin expression groups the
affiliated indices together into a single value. Like reduc-

tions, Puffin affiliation expressions find the sum of all val-
ues, the minimum value, the maximum value or the aver-
age value of all affiliated indices. Puffin affiliation expres-
sions use member function syntax for the various types of
affiliation expressions, respective of the list in the previous
sentence: sum, min, max, and average. Consider again the
example from LULESH 2.0’s calculation of hourglass forces;
this time with the Puffin affiliation from nodes to elements,
NodeToElem:

fd [ Nodes ] [ Dim ] <<= fd + NodeToElem . sum( hgfd ) ;

This code matches the original LULESH 2.0 thread-safe
code. The main drawback of this version is that it can-
not be combined with the other hourglass force calculations
because those are all over the element aspect, whereas this
is over the node aspect.

One restriction common to both Puffin affiliation statements
and expressions is that they both must be used with state-
ments over the originating aspect.

3. IMPLEMENTATION
C++ template meta-programming is the basis of Puffin’s
implementation. Every valid Puffin expression and state-
ment creates a templated object. The types of the operands,
arguments, and components of each Puffin expression and
statement are used as the template arguments to these ob-
jects.

3.1 Runtime Implementation
At runtime, the first thing a Puffin statement does is con-
struct the proper objects (ASTs) as described above. For
Puffin standalone statements, the syntax alone implies when
object construction is complete. For Puffin statement blocks,
the call to the execute member function at the end implies
that object construction is complete. Once the objects for
the expressions and statements are constructed, execution
can begin. Execution begins by iterating over the aspects
provided at the top level. Each aspect extends the index
object (or creates an index object if one does not yet ex-
ist). The index object keeps track of all aspects currently
being iterated over and the current position in that iteration
space.

Iteration over a single aspect has the following form:

void i t e r a t e ( Aspects aspects ,
Arguments arguments ,
Given given ) {

typedef typename Aspects : : F i r s t : : template
ExtendIndex<Given > : : Index

Index ;
int const s i z e = aspec t s . f i r s t ( ) . s i z e ( ) ;
for ( int i = 0 ; i < s i z e ; i++) {

Index index = aspec t s . f i r s t ( )
. extend index ( i ,

g iven ) ;
RecursiveType : : i t e r a t e ( a spec t s . r e s t ( ) ,

arguments ,
index ) ;

} ;
} ;

where aspects are the aspects to range over, given is the
current index object, arguments are the arguments that are



specific to the statement currently being executed, given

is the current index object, and RecursiveType is the type
defined to handle recursively the iteration of the remaining
aspects. Each iteration of the for loop, a new index is set
up with the current iteration count for the current aspect.

Once all aspects have been set up in the current index object,
the statement is executed. Each statement type is different,
but the assignment statement is representative:

void i t e r a t e ( Lhs & lhs ,
Rhs const & rhs ,
Index const & index ) {

l h s . r e f ( index ) = rhs . eva l ( index ) ;
} ;

where lhs is the Puffin array on left-hand-side of the assign-
ment, rhs is the Puffin expression on the right-hand side of
the assignment, and index is the current index object. The
call to lhs.ref(index) returns a reference to the location in
the lhs array represented by the current index object, and
likewise, the call to rhs.eval(index) returns the result of
the rhs expression evaluated at the current index.

Additionally, wherever aspects are directly referenced in Puf-
fin code, such as dependent assignment, reductions, and af-
filiations, the index object is extended to the new aspects
and iterated over. Nesting aspects and therefore loops like
this allows Puffin code to be very flexible and adaptive to
the calculations that are to be performed.

3.2 Current Optimizations
Currently, Puffin has a two major optimizations implemented.
First and foremost is heavy use of templates. While C++
class inheritance could be used inside of Puffin to simplify
the use of templates and the implementation overall, naive
use of C++ inheritance requires use of virtual function lookup
tables at runtime which imposes a high overhead cost. With
Puffin’s current implementation, we not only avoid the over-
head of a virtual function lookup table but most Puffin func-
tions can be inlined at compile-time, further reducing the
runtime overhead of Puffin.

Second, we unroll many small aspect loops by hand. As with
all loop unrolling, the goal is to reduce the loop overhead.
Unlike general loop unrolling, with aspects of fixed size, we
know the exact extend of the loop. Thus, we can completely
unroll the loop. Additionally, by unrolling the loop we can
move index information about specific iterations to compile-
time. Thus, rather than having the iteration count of an
aspect added to the index object as a runtime value, we can
add the iteration count to index object as a compile-time-
known value, i.e. a template argument. For certain Puffin
objects, such as Puffin arrays and Puffin constants, knowing
at compile-time which iteration count is being performed
shifts runtime checks to compile-time and therefore reduces
runtime overhead.

4. ADOPTION WORKFLOW
We designed Puffin from the outset to be used in exist-
ing C++98 projects, with an emphasis on hydrodynamic
simulation projects. With this in mind, we designed Puf-
fin to be easy to integrate and adopt into such projects.

As such, Puffin is currently implemented in a collection of
C++ header files and only uses standard C++98, with no
compiler-specific directives or pragmas. Currently, Puffin
has been tested to work with gcc, clang, and xlc. While we
designed Puffin to work with the 1998 standard of C++, we
know of no reason Puffin cannot work with the 2011 or 2014
standards of C++.

Adding Puffin to an existing C++98 is straightforward. First,
one must make sure the Puffin header files are in a location
that can be found by the compiler. Second, one must include
the main Puffin header file wherever Puffin will be used:

#inc lude <Puf f in . h>

Once we add parallel backends to Puffin, the process of in-
corporating these backends into existing projects will be-
come more complicated. For example, our planned CUDA
backend for Puffin will require NVIDIA’s CUDA compiler
to be added to existing projects’ build systems. However,
despite this complication for Puffin’s planned parallel back-
ends, we plan to keep the sequential version of Puffin simple
and straightforward to add to any project.

Puffin adoption can be piecemeal. After Puffin has been
added to a project, individual loops and calculations can
be rewritten in Puffin. After each loops is rewritten into
Puffin, correctness and performance tests can be run on the
project as a whole to detect how each loop refactor affects
overall results. Thus, conversion to Puffin can be done in
developers’ spare time, on new development efforts, and/or
when debugging issues in existing code, while leaving well-
established working code untouched.

Also, once several loops in a sequence are rewritten in Puffin,
those Puffin blocks can be quickly and easily refactored. Be-
cause each Puffin statement block is extensible, it is easy to
merge multiple blocks over the same or similar aspects into
a single block. Moreover, it is just as easy to split a single
block in to multiple blocks. Refactoring sequences of Puf-
fin code into fewer loops code often reduces loop overhead.
Unfortunately, these refactors can also increase register pres-
sure and instruction usage per loop, which can cause register
spilling and increase pressure on the instruction cache. Be-
cause of these mixed benefits, there are no hard and fast
rules for optimizing Puffin code.

Finally, many existing software simulation projects have spent
a large amount of resources testing and validating the results
of their simulations. Switching platforms and/or rewrit-
ing the existing code can then become a more complicated
and costly task because the new code must be validated
again. A careful conversion to Puffin can simplify this val-
idation effort, assuming that the existing project’s results
are trusted.

5. PRELIMINARY RESULTS
Puffin is a work in progress, and our goal for our initial pro-
totype is to support everything needed to write a Puffin port
of LULESH 2.0 [6]. Currently, Puffin is only a few features
short of this goal. Because of Puffin’s ability to be incremen-
tally adopted, we were able to port most of LULESH 2.0 to
Puffin. Out of LULESH 2.0’s roughly 60 loops, including



Version
Compile-time Total

Relative to
LOC LOC

(sec) LOC Removed Added
Original 13.39 3176 — — —

Puffin Global Definitions 13.95 3353 Original — 177
Simple Features 21.44 3061 Puffin Global Definitions 703 355
All Features 39.69 2751 Simple Features 441 185

Optimized Original 10.61 3076 Original 267 167
Optimized Global Definitions 11.56 3253 Optimized Original — 177

Optimized Simple Features 25.34 3033
Optimized Global Definitions 611 335

Simple Features 75 47

Optimized All Features 38.37 2723
Optimized Simple Features 441 185

All Features 75 47

Table 1: Comparing the compile-times and lines of code (LOC) of different versions of LULESH 2.0. Original
is the original version of LULESH 2.0 without MPI. Puffin Global Definitions is LULESH 2.0 with Puffin’s
global definitions of aspects, arrays, and global variables. Simple Features is the version of LULESH 2.0
using the “simple” features of Puffin, that is, all features except for Puffin match (Section 2.5.3) and Puffin
affiliations (Section 2.8). All Features is the version of LULESH 2.0 using the all implemented features
of Puffin, as described in Section 2. The Optimized versions of all of these have fused the 16 loops in
EvalEOSForElems function into 2 loops. The Relative to column shows which other version the LOC Removed
and LOC Added columns refer to for each row. Thus, the Optimized Simple Features version of LULESH
2.0 required 75 lines of code removed and 47 added, relative to the Simple Features version of LULESH 2.0.

nested loops, only 16 cannot yet be ported to LULESH 2.0.
Thus, all the results from the Puffin port of LULESH 2.0
below are from tests of all of LULESH 2.0 with nearly three
fourths of its loops written in Puffin and the remaining loops
are the original LULESH 2.0 code.

Modifying LULESH 2.0 to use Puffin is fairly straightfor-
ward. First, we define the aspects and the array types that
we will use in LULESH 2.0. Next, we provide access to
the quasi-global variables of LULESH 2.0’s Domain class by
building Puffin arrays for variables using the memory that
LULESH 2.0 already allocates for them. All of these defini-
tions take roughly 177 lines of code. In Table 1, the Puffin
Global Definitions and Optimized Global Definitions repre-
sent adding these Puffin definitions to LULESH 2.0 with-
out using Puffin anywhere. Having these definitions present
slows down compilation by a small but noticeable amount,
and does not impact runtime in a noticeable way.

The next task is rewriting parts of LULESH 2.0 using Puf-
fin. While we replaced each loop one at a time, for the sake
of space, we present just two versions here. The first version
replaces all loops that use Puffin’s “simple” features, that is,
all loops which can be written in Puffin without using match,
affiliations, or whole-aspect calculations. This version main-
tains LULESH 2.0’s loop structure and is called Simple Fea-
tures in Table 1. The second version of LULESH 2.0 with
Puffin replaces all loops that use Puffin’s implemented fea-
tures, that is, all loops which can be written in Puffin with-
out using whole-aspect calculations. (Whole-aspect calcula-
tions have not been implemented yet; see Section 7 for more
details.) As Table 1 shows, in both versions, the Puffin code
is about half the size of the code it replaces.

While Puffin can support three fourths of LULESH 2.0’s
loops, Puffin only replaces only about one third of LULESH
2.0’s lines of code. The loops that contain whole-aspect cal-
culations are very detailed calculations that require a lot
more lines of code than do the loops that do not use whole-

aspect calculations. Once we implement whole-aspect calcu-
lations in Puffin and port the rest of LULESH 2.0 to Puffin,
we expect a more dramatic reduction in the total number of
lines of code.

Then, we changed the loop structure of the EvalEOSForElems
function in LULESH 2.0. The original version of this calcu-
lation is roughly 280 lines of code, uses three functions and
16 loops. The Puffin version of the calculation preserving
loop structure takes about 140 lines of code, one function
and 16 loops. By combining all 16 loops into two loops, the
Puffin version takes about 120 lines of code, and its execu-
tion for all problem sizes speeds up by about 10%. (Avoiding
data races prevents the last two loops to be merged.) For
a fair comparison to LULESH 2.0, we optimized the orig-
inal version of LULESH 2.0 with the same loop structure.
In this optimized version of LULESH 2.0, the calculation
took about 180 lines of code, and likewise its execution for
all problem sizes speeds up by about 10%. (The test with a
problem size of 30 speeds up by about 25%, bringing its exe-
cution to where we expect it to be.) In Table 1, the versions
of LULESH 2.0 with optimized equations of state calcula-
tions are Optimized Original, Optimized Global Definitions,
Optimized Simple Features, and Optimized All Features.

5.1 Maintaining Existing Results
Maintaining the same results during adoption of languages
like Puffin is important to many existing software projects.
Many software simulation projects have spent considerable
time and effort validating the results of their simulation re-
sults. Re-validation increases the overall cost of adopting
a new language or library that does not maintain the same
results.

Throughout the process of porting LULESH 2.0 to Puffin,
we strove to keep the same results as the original version
of LULESH 2.0. For the most part, maintaining the results
was straightforward: We simply maintained the same order
of operations.
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Figure 1: Comparison of the Original version of
LULESH 2.0 with the Simple Features and All Fea-
tures versions. These numbers have been normal-
ized based the Original version of LULESH 2.0.
Thus, a time of 1.08 means that the All Features
version ran 8% slower than the Original version of
LULESH 2.0 for the test with problem size of 20.
For the problem size 30 tests, the Original version
runs slower than expected, which explains why the
Puffin versions are 5-10% faster. See Figure 2 for
more typical results.

However, different compilers and different optimizations can
produce different results because of extra-precision oper-
ations such as fused multiply-add (FMA). All versions of
LULESH 2.0 return different results because of these extra-
precision operations, when used with different compilers or
different optimizations. Some compilers have flags that pre-
vent the use of extra-precision operations, such as gcc’s float-
store flag. When compiled with these flags, all version of
LULESH 2.0 presented in this paper produce the same re-
sults, down to the same rounding error. Without these flags,
all version of LULESH 2.0 presented in this paper produce
same energy at the origin, which is LULESH 2.0’s standard
correctness measurement, that ignores rounding error.

5.2 Performance
Figures 1 and 2 show the runtime overhead of Puffin us-
ing both the original and optimized loop structure. These
tests were run on a BG/Q system with PPC A2 CPUs, us-
ing Clang version 3.7 (optimization level 3 and aggressive
inlining). The “simple” version of Puffin has no more than
5% runtime overhead, and the “full” version of Puffin has no
more than 11% runtime overhead.

The biggest cost to using Puffin is the compile-time over-
head: As shown in Table 1, the “simple” version of Puf-
fin takes nearly 2X time to compile, and the “full” ver-
sion of Puffin takes almost 3X as long to compile. While
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Figure 2: Comparison of the Optimized Original
version of LULESH 2.0 with the Optimized Sim-
ple Features and Optimized All Features versions.
These numbers have been normalized based the Op-
timized Original version of LULESH 2.0. Thus, a
time of 1.08 means that the All Features version
ran 8% slower than the Original version of LULESH
2.0 for the test with problem size of 10.

this compile-time overhead is significant, most modern build
systems support parallel compilation of multiple compila-
tion units. This parallel compilation limits the impact of
the compile-time overhead. Likewise, modern build sys-
tems only recompile compilation units whose source code
has changed. Thus, during active development using Puffin,
only the files that are modified must be recompiled.

6. RELATED WORK
There are many other domain-specific languages that have
functionality and domains similar to Puffin, but none con-
tain all of Puffin’s features. Nebo [4] and Liszt [3] are prob-
ably the two closest projects. Nebo is a domain-specific lan-
guage for solving partial differential equations on structured
meshes. Nebo uses template meta-programming the same as
Puffin. Nebo supports multiple backends, including a GPU
backend. The main difference between them is that Puffin
is targeting unstructured meshes, whereas Nebo is strictly
limited to structured meshes.

Liszt [3] represents calculations by abstracting based on ge-
ometry and spatial reasoning, similar to Puffin affiliations.
Liszt supports both CPU- and GPU-based parallelism, but
does not support incremental adoption. Thus, entire appli-
cations must be written in Liszt to use Liszt.

RAJA [5] is an abstraction layer with similar goals to Puffin.
Like Puffin, RAJA’s main goal is modifying existing project
so that the project is portable to multiple architectures. Un-
like Puffin, RAJA focuses on changing as little about the ex-



isting project as possible. Thus, porting an existing project
to RAJA will be faster and simpler than porting the same
project to Puffin. However, code ported to Puffin will be
easier to maintain and more flexible.

OptiMesh [7], developed with the Delite compiler [2], offers
CPU- and GPU-based parallel backends within the same
runtime environment, as we plan to add to Puffin. OptiMesh
uses the same abstractions and much of the same syntax
as Liszt. In general, OptiMesh performs better than Liszt
because Delite supports more aggressive optimizations.

RAJA and OptiMesh support forms of incremental adop-
tion, while Liszt does not. For OptiMesh, partial adoption
require adding new compilers to a projects build system. In
comparison, RAJA and Puffin works without adding a new
compiler in existing C++ projects.

7. FUTURE WORK
Puffin requires more features, more backends, more devel-
oper tools, and more developer support before it is ready to
be used in production projects.

First, we plan to implement the features needed to complete
the Puffin port of LULESH 2.0. There are only two major
features remaining to complete this goal. The largest, non-
implemented feature is supporting whole-aspect functions.
All functions Puffin currently supports all calculate a single
scalar value from other scalar values. LULESH 2.0 requires
vector- and matrix-based operations, such as cross product
and calculating a determinant of a matrix. These calculation
cannot be broken down into smaller scalar calculations based
on the same indices.

The second feature to be implemented is better temporary
array support. Currently, users must manually manage the
temporary arrays used only within a single iteration of a
Puffin statement block. While this approach works for now,
these temporary arrays will not work with parallel backends.

Puffin’s current main advantage is code that is shorter, more
maintainable, and more flexible than current C++ code with
low overhead. However, as we designed Puffin, our main
goal was portable code. Our long-term plan, once Puffin’s
remaining features are done, is to implement a CUDA GPU
backend to Puffin that will require minimal changes to the
Puffin port of LULESH 2.0 to run efficiently on GPUs. Sim-
ilar to Nebo’s approach to GPU execution [4], each stan-
dalone statement and statement block will become a CUDA
kernel. Beyond GPUs, we may implement backends target-
ing the Xeon Phi architecture family and parallel libraries
such as OpenMP and MPI.

Currently, Puffin is a proof of concept: Abstractions like
Puffin can simplify users’ code without adding intolerable
overhead. Once the work described above is complete, Puffin
will be a prototype showing abstractions can create efficient
portable code without unbearable costs.

However, this prototype will not yet be useful for produc-
tion hydrodynamics codes. When this prototype is finished,
it will still require testing, documentation, and debugging
tools.

8. CONCLUSIONS
While Puffin is still just a prototype, we have begun to iden-
tify the costs and benefits of adopting Puffin in existing un-
structured hydrodynamics simulation projects. While it is
easy to add Puffin to an existing project’s build system,
there are costs to adopting Puffin. Puffin’s highest initial
cost is rewriting the existing code into Puffin. As our par-
tial ports of LULESH 2.0 show, Puffin can be incrementally
adopted. The recurring costs of compilation and runtime
overhead cannot be avoided. Compilation is currently 2-3X
slower, but with modern build systems this overhead can
be reduced to acceptable levels. Runtime overhead is cur-
rently around or below 11%. While we will continue to try
to reduce this overhead, the overhead is low enough that the
benefits of a complete Puffin may be outweigh this overhead
as it is now.

Currently, Puffin’s benefits are limited, mainly because Puf-
fin is not yet complete. Code written in Puffin is about half
the size of loops it replaces. Additionally, we plan to add
support for Puffin code on GPUs and other nontraditional
architectures, which will provide an incrementally adoptable
path to portable code for existing codebases.

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344. Release Num-
ber: LLNL-CONF-676764
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